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Outline 

• Past results and current status of AFRL work 

– Non-reacting review 

– Reacting flow facility description 

– Hot-fire testing preliminary results 

• New variable descriptions 

– Dimensionless forcing frequency 

– Dimensionless forcing amplitude 

• Shakedown cold flow data 

• Description of interaction mechanisms 
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Goals 

• Extend previous non-reacting research on 
subcritical and supercritical acoustic-jet interactions 
to reacting flow in a canonical coaxial shear flow 
configuration 

– Emphasis on the flame holding region 

• Maintain traceability to non-reacting conditions to 
assess the magnitude of the effect of chemical 
reactions 

• Explore inter-element effects 

PAST APPROACH 

• Continue non-reacting research during construction 
of the reacting facility 
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Where we were last year (steady) 

Pr c1 c2 c3 c4 c5 

0.44 9 -0.34 -0.15 0.30 

1.05 4.6 -0.42 -0.20 0.07 -0.29 

Subcritical (Pr=0.44) 
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 • Correlated effects of 
momentum flux 
ratio, density ratio, 
and geometry on 
dark core length 

Supercritical (Pr=1.05) 

y = 1.0214x - 0.1665
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Where we were last year (acoustics) 

Pressure coupled Velocity coupled Little noticeable response 

Three main classes of interactive behavior, each with major sub-classes 
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An extreme case 

Annihilation of the dark 
core near pressure 

antinodes 

Pr=1.05, J=1.7 
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Where we said we would be this year 

Task Date 
Data Acquisition and Control System Final 
Check out Sept 22-30, 2012 
Inner chamber fabrication Now- until December 1, 2012 

System Check-out runs 
October 2012- February 
2013 

Heat Exchanger Acceptance Testing Jan-13 
Cold Flow Runs March - April 2013 
Igniter Tests May-June, 2013 
First Hot-fire Data Aug-Sept, 2013 

First LOX/H2 
combustion 
achieved in 

October 2013 

Be
fo

re
 

Af
te

r 
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OH* emission at 400 psia 
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Features of the experimental facility 

• Complete control of acoustic phase  
– Pressure node to pressure antinode and all phases in 

between 
• Precise control of amplitude 

– No reliance on feedback from combustion to acoustics 
• Precise control of pressure 

– Subcritical and supercritical 
– Pressurized externally in a large volume, little influence of 

combustion 
• Precise control of LOX temperature to within 1K 

– Large sensitivity to temperature near the critical pressure 
• Completely new method of ignition for simplicity and 

operability at high pressures 
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Nanotube photo ignition method 

Carbon nanotube capsule 

Original development 
under AFOSR funding 
from Mike Berman 

Developed into a high 
pressure igniter under 
Mitat Birkan 
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Coaxial Jets 
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Inflow boundary conditions 
• Mean velocity profiles 
• RMS fluctuation profiles 
• Spectral content 
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Forced Coaxial Jets 

1. Transverse Acoustic 
mode from 
chamber/siren 
– f=f(c, geometry) 

2. Acoustic modes 
propellant lines 
– f~c/2L 

3. Post wake 
– St=ft/Uch 

4. Shear layer instabilities 
– Stθ=fθ/Uch 

5. Jet preferred modes 
– St=fDij/Uij 
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New Forcing Characterization 
• Shift pressure normalization from chamber pressure to injector dynamic 

pressure 

 

• Identify receptivity inception point—threshold for coupling between acoustics 
and flame 

Dimensionless acoustic amplitude Dimensionless acoustic amplitude 
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Characteristic Jet Frequencies 

From Yule (1978), St ~ 0.3-0.4 

St ~ 0.3 

From Crow and Champagne (1971) 
Increasing 

Re 

Discrete pairing 
in laminar 

region 
Turbulent 

region 

x/D 

St 
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Coaxial Jet Frequencies 

x/D 

St 

Phenomena that govern spectral features of coaxial jets 
• Two shear layers exhibiting unique streamwise frequency distribution 
• One shear layer driving the other (Dahm, Frieler, and Tryggvason 

1992) 
• Inner post wake instability 
• Inflow turbulence 
• Hydrodynamics where the shear layers merge (i.e. end of potential 

cores) 
• Instabilities associated with two-phase flow (i.e. We number effects) 
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Unforced Coaxial Jets 

• Frequencies, convection velocities 
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Shakedown Data 

• Cold flow data collected during facility shakedown 

– Demonstrate operation of facility components 

– Identify delay times necessary to develop ignition 
sequence 

– Generate supporting evidence for Strouhal number 
scaling law 

– Explore sensitivity of receptivity to frequency and 
amplitude ratio 

Select cold flow cases that have 
corresponding reacting flow conditions. 
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Unforced Coaxial Jets 

J = 2.0 

J = 6.0 
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Convection Velocity 

Verify the accuracy of the Dimotakis (1986) expression for shear layer 
convection velocity for these flow conditions.   

Uc,meas  = 
Δt 

Δs 

Uc,meas  
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Preferred Mode Frequency 
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Pressure Antinode Mechanism 

J = 2 

J = 6 

unforced Max forcing POD structure POD structure 

Velocity Node Outer jet mass 
flow pulsations 
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Pressure Node Response 
0.2=J 6.2==

jet

forcing

f
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Natural 
convective 

POD mode pair 

No receptivity 

Forced 
convective 

POD mode pair 
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Pressure Node Mechanism 

J = 2 

J = 6 

Pressure Node 

Apparent excitation of 
antisymmetric mode in the 

outer jet that drives 
instabilities in the inner jet 
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Summary and Future Work 

• AFRL ready to commence reacting flow experiments with 
acoustics 

• Target specific injector conditions, and explore new 
forcing parameters (dimensionless frequency and 
amplitude) 
– Identify natural frequencies of reacting coaxial jets 

– Determine forcing conditions at which the reacting flow is 
receptive to acoustics 

– Characterize the heat release response within the 
receptive regime 

• Preliminary cold flow “shakedown” data demonstrates 
receptivity dependency on frequency and amplitude 
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Backup slides 
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Unforced Coaxial Jets 

• Frequency depends on location 
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Convection Velocity 
Convective Shear Layer Velocity by Dimotakis (1986) 
Vortex Frame of Reference 

 
 
 
 
 

 
 

• Bernoulli’s equation 
− A stagnation point must exist between vortices. Therefore, along a line through this point, 

dynamic pressures are approximately equal. 
𝜌𝑜 𝑈𝑜 − 𝑈𝑐 ≈ 𝜌𝑖 𝑈𝑐 − 𝑈𝑖  
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If St, D, Uc are held constant then fnat may be constant.  
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Frequency Dependence 
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Convective Mode from POD 

POMs 3 & 4 exhibit the same 
flow structure, shifted by 90° 

in the direction of flow. 
 
 

Proper orthogonal modes 
(POMs) 3 & 4 were found to 
be the most energetic 
conjugate pair. 
 
The natural mode is 
represented by POMs 3 & 4. 
 
The natural mode spans a 
band of frequencies rather 
than a single peak frequency. 

 

• Proper Orthogonal Decomposition 
• To identify traveling, coherent structures, a conjugate mode pair is identified as any two 

modes whose CPSD magnitude peaks near a phase of ±90°.12 

 
 
 
 
 
 
 
 
 
 
 
 

  
  
 

 
 
 

     

POM 3 POM 4 

Arienti, M. and Soteriou, M.C.(2009) 
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